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Q: Given the diameter, who achieve the largest size?

In the Euclidean space Rn, answer: ball {x21 + · · ·+ x2n ≤ 1}.

In the hypercube Hn = {0, 1}n, the answer is Hamming ball!

Hamming distance: dH(x, y)
def
=

∑
|xi − yi |

Theorem (Kleitman, 1966)

Let F ⊆ 2[n] be a set family with |A△ B| ≤ d (∀A,B ∈ F). Then

|F| ≤


(n
0

)
+
(n
1

)
+ · · ·+

(n
t

)
if d = 2t,

2
((n−1

0

)
+
(n−1

1

)
+ · · ·+

(n−1
t

))
if d = 2t + 1.

Tightness: Hamming ball centered at (0, . . . , 0︸ ︷︷ ︸
n

) or (12 , 0, . . . , 0︸ ︷︷ ︸
n−1

).
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Definition

Let F ⊆ 2[n] be a set family with |A△ B| ∈ D (∀A,B ∈ F). Then

fD(n)
def
= the maximum of |F|.

Kleitman’s isodiametric inequality determines fD(n) for D = [d ].

Kleitman’s proof: set shifting and compression

Huang–Klurman–Pohoata proof: linear algebra

Huang–Klurman–Pohoata generalization to D = {2s + 1, . . . , 2t}:

(
1 + o(1)

)
· 1(t

s

) ·
(

n

t − s

)
≤ fD(n) ≤

(
1 + o(1)

)
·
(

n

t − s

)
.

HKP conjectured that the lower bound is asymptotically correct.
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Theorem (HOMO, DGLOZ, 2025+)

For homogeneous D =
{
sd , (s + 1)d , . . . , td

}
, we have

fD(n) =


(
1 + o(1)

)
·

∏
ℓ∈Deven

2n
ℓ if dst is even,

(
2 + o(1)

)
·

∏
ℓ∈Deven

2n
ℓ if dst is odd.

The “d = 1, s = odd, t = even” case resolves the HKP conjecture.

Theorem (NON-HOMO, DGLOZ, 2025+)

Let D =
{
sd + a, (s + 1)d + a, . . . , td + a

}
be non-homogeneous.

If Deven = ∅, then fD(n) = 2.

If Deven ̸= ∅, then
⌊

2n
min(Deven)

⌋
≤ fD(n) ≤ n + 2.
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Q: Why “△ via ∩ (i.e., distances via intersections)”?

The following identity (⋆) is crucial:

|A△ B| = |A \ B|+ |B \ A| = |A|+ |B| − 2|A ∩ B|. (⋆)

A \ B B \ AA ∩ B

A B

Q: Why “Deven” matter? What happens if Deven = ∅?

Suppose D consists of odd integers. Then

(⋆) =⇒ |A△ B|+ |B △ C |+ |C △ A| = even =⇒ fD(n) ≤ 2.
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Plan: establish the main result for special distance sets

Prove HOMO lower bound assuming D = {3, 4, 5, 6}.

Discuss the harder D = {3, 4, 5, 6, 7} case.

Prove HOMO upper bound assuming D = {3, 4, 5, 6}.

Discuss the harder D = {�3, 4, 5, 6, 7} case.

Prove NON-HOMO upper bound assuming D = {4, 10}.

Linear NON-HOMO lower bounds are trivial.

Apply our methods to notable binary code problems.

Approach binary t-distance set conjecture.
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Proposition

If D = {3, 4, 5, 6}, then fD(n) ≥
(
1
3 − o(1)

)
·
(n
2

)
.

Proof. Recall △ = distance and ∩ = intersection. Also recall identity

|A△ B| = |A \ B|+ |B \ A| = |A|+ |B| − 2|A ∩ B|. (⋆)

Consider uniform family. The following observation suffices:

F ⊆
(
[n]

3

)
(3-uniform) is {0, 1}-∩ (⋆)

=⇒ {4, 6}-△. ■

Definition

A Steiner triple system partitions clique Kn into edge-disjoint triangle K3.

Steiner is of size
(n
2

)
/
(3
2

)
. It exists iff

(2
1

)
|
(n−1

1

)
and

(3
2

)
|
(n
2

)
.
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|A△ B| = |A \ B|+ |B \ A| = |A|+ |B| − 2|A ∩ B|. (⋆)

Consider uniform family. The following observation suffices:

F ⊆
(
[n]

3

)
(3-uniform) is {0, 1}-∩ (⋆)

=⇒ {4, 6}-△. ■

Definition

A Steiner triple system partitions clique Kn into edge-disjoint triangle K3.

Steiner is of size
(n
2

)
/
(3
2

)
. It exists iff

(2
1

)
|
(n−1

1

)
and

(3
2

)
|
(n
2

)
.
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Proposition

If D = {3, 4, 5, 6, 7}, then fD(n) ≥
(
2
3 − o(1)

)
·
(n
2

)
.

We need a “double” Steiner system!

Lemma (Rödl nibble)

There is F ⊆
([m]

t

)
of size |F| =

(
1− o(1)

)
· (

m
t−s+1)
( t
t−s+1)

such that

for every distinct A,B ∈ F , we have |A ∩ B| ≤ t − s.

Lemma (Rödl “double” nibble)

There are F1,F2 ⊆
([m]

t

)
, each of size

(
1− o(1)

)
· (

m
t−s+1)
( t
t−s+1)

, such that

for every distinct A,B ∈ F1 or F2, we have |A ∩ B| ≤ t − s,

for every A ∈ F1 and B ∈ F2, we have |A ∩ B| ≤ t − s + 1.
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Proposition

If D = {3, 4, 5, 6}, then fD(n) ≤
(
1
3 + o(1)

)
·
(n
2

)
.

Proof. WLOG, assume distance 6 is achieved and ∅ ∈ F , [6] ∈ F . Let

F ′ def
=

{
A ∈ F : |A \ [6]| ≥ 3

}
.

With the help of intersection results, we establish the followings.

(1) FW Th’m =⇒ |F \ F ′| = O(n).

(2) DEF Th’m =⇒ |F ′| ≤ n
3 · n

2 .

Combining (1) and (2), we obtain

|F| = |F ′|+ |F \ F ′| ≤ n

3
· n
2
+ O(n) =

(1
3
+ o(1)

)
·
(
n

2

)
. ■
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Theorem (Frankl–Wilson, 1981)

If F ⊆
([n]
k

)
is {ℓ1, . . . , ℓr}-∩, then |F| ≤

(n
r

)
.

Proof of (1). Recall F \ F ′ =
{
A ∈ F : |A \ [6]| < 3

}
. Write

FS
def
=

{
A ∈ F \ F ′ : |A ∩ [6]| = S

}
.

Arbitrarily fix S . For distinct A,B ∈ FS ,

|A△ B| ≤ |A \ [6]|+ |B \ [6]| < 3 + 3 = 6 =⇒ FS is {3, 4, 5}-△.

WLOG ∅ ∈ FS . Write Fk
S

def
=

{
A ∈ FS : |A| = k

}
(k = 3, 4, 5). Then

(⋆) =⇒ Fk
S is {2}-∩ FW

=⇒ |Fk
S | ≤ n

sum
=⇒ |F \ F ′| = O(n). ■
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Theorem (Deza–Erdős–Frankl, 1978)

Suppose n ≥ 2kk3. If F ⊆
([n]
k

)
is {ℓ1, . . . , ℓr}-∩, then |F| ≤

r∏
i=1

n−ℓi
k−ℓi

.

Proof of (2). Recall [6] ∈ F and F ′ =
{
A ∈ F : |A \ [6]| ≥ 3

}
. Then

|A△ [6]| ≤ 6
(⋆)
=⇒ |A \ [6]| ≤ |A ∩ [6]|

=⇒ |A| = |A ∩ [6]|+ |A \ [6]| ≥ 2|A \ [6]| ≥ 6.

Recall ∅ ∈ F . It follows from |A△∅| ∈ {3, 4, 5, 6} that |A| = 6.

We see that F ′ ⊆
([n]
6

)
is {3, 4, 5, 6}-△. Thus

(⋆) =⇒ F ′ is {3, 4}-∩ DEF
=⇒ |F ′| ≤ n − 3

6− 3
· n − 4

6− 4
≤ n

3
· n
2
. ■
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Proposition

If D = {�3, 4, 5, 6, 7}, then fD(n) ≤
(
1
3 + o(1)

)
·
(n
2

)
.

Instead of the F ′ ⊆
([n]
6

)
, we have F ′

1 ⊆
([n]
7

)
and F ′

2 ⊆
([n]
6

)
with

|F ′
1| ≤

(1
3
+ o(1)

)
·
(
n

2

)
, |F ′

2| ≤
(1
3
+ o(1)

)
·
(
n

2

)
.

Detailed analysis of the interplay between F ′
1,F ′

2 is required.

In particular, we need the structural part of DEF Th’m.

Theorem (Deza–Erdős–Frankl, 1978)

Suppose n ≥ 2kk3. If F ⊆
([n]
k

)
is {ℓ1, . . . , ℓr}-∩, then |F| ≤

r∏
i=1

n−ℓi
k−ℓi

.

Moreover, if |F| ≥ 2kk2nr−1, then there exists C ∈
([n]
ℓ1

)
with C ⊆ ∩F .
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Proposition

If D = {4, 10}, then fD(n) ≤ n + 2.

Proof. WLOG ∅ ∈ F . Then |A| = |A△∅| ∈ {4, 10}, hence

(⋆) =⇒ F ⊆
(

[n]

1 mod 3

)
is {2 mod 3}-∩.

Identify sets F1, . . . ,Fm with characteristic vectors v1, . . . , vm.

The Gram matrix
(
⟨vi , vj⟩

)
m×m

of v1, . . . , vm has rank estimate

n ≥ rankF3



1 −1 −1 · · · −1

−1 1 −1 · · · −1

−1 −1 1 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · 1


≥ m − 1 =⇒ |F| ≤ n + 2. ■
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Identify sets F1, . . . ,Fm with characteristic vectors v1, . . . , vm.

The Gram matrix
(
⟨vi , vj⟩

)
m×m

of v1, . . . , vm has rank estimate

n ≥ rankF3



1 −1 −1 · · · −1

−1 1 −1 · · · −1

−1 −1 1 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · 1


≥ m − 1 =⇒ |F| ≤ n + 2. ■
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Binary t-codes

Metric M ⊇ X . Distance set D(X )
def
=

{
distM(x , y) : x ̸= y ∈ X

}
.

In coding theory terminology, X is t-code if |D(X )| = t. Denote

A(M,D)
def
= max

{
|X | : X ⊆ M, D(X ) = D

}
,

A(M, t)
def
= max

{
A(M,D) : |D| = t

}
.

Fundamental challenge. Find good upper bounds on A(M, t).

Euclidean: Larman, Rogers, Seidel (1977) Blokhuis (1981) showed

n(n+1)
2 ≤ A(Rn, 2) ≤ (n+1)(n+2)

2 .

Euclidean sphere: Delsarte, Goethals, Seidel (1977) showed

n(n+1)
2 ≤ A(Sn−1, 2) ≤ n(n+3)

2 .
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Conjecture (Folklore, communicated to us by Wei-Hsuan Yu)

If n ≫ t, then

A(Hn, t)
(1)
= A(Hn, {2, 4, . . . , 2t})

(2)
=


(n
0

)
+
(n
2

)
+ · · ·+

( n
t−2

)
+
(n
t

)
if t is even,(n

1

)
+
(n
3

)
+ · · ·+

( n
t−2

)
+
(n
t

)
if t is odd.

Delsarte (1973) showed A(Hn, t) ≤
(n
0

)
+ · · ·+

( n
t−1

)
+
(n
t

)
.

Barg, Musin (2011) showed if |D| = t and
∑
d∈D

d ≤ tn
2 , then

A(Hn,D) ≤
(n
0

)
+ · · ·+

( n
t−2

)
+
(n
t

)
.

Barg, Glazyrin, Kao, Lai, Tseng, Yu (2024) settled t = 2.
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Theorem (DGLOZ, 2025+)

Let n ≫ t. If |D| = t and D ̸= {2, 4, . . . , 2t} is independent on n, then

A(Hn,D) ≤
( t

t + 1
+ o(1)

)
·
(
n

t

)
.

This confirms (1) for every fixed D, making significant progress.

Previous results rely on polynomial methods or linear programming.

Our approach is purely extremal set theory, in particular DEF Th’m.

Theorem (DGLOZ, 2025+)

The equality (2) holds if and only if n ≥ 2t + 2.

We modify the HKP linear algebraic method to confirm (2).
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Open problems

Find the leading coefficient of fD(n) for non-homo D.

When D = {4, 10}, an explicit construction shows fD(n) ≥ 5⌊ n
9⌋.

Prove (or disprove) the binary t-distance conjecture.

n-Hadamard-matrix exists =⇒ A(Hn, {2}) = A(Hn, { n
2}) = n.

Establish other △ analogues of the known ∩ results.

Thanks!
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