Rainbow even cycles

Zichao Dong, CMU Zijian Xu, PKU

March 18, 2023

vertex set [7]

4-cycle D_1 on 1, 2, 3, 7

Zichao Dong (CMU)

Rainbow even cycles

4-cycle D_2 on 1, 3, 4, 6

4-cycle D_3 on 1, 3, 4, 6

4-cycle D_4 on 4, 5, 6, 7

rainbow 4-cycle on 1, 3, 4, 7

Q: How many cycles on [*n*] guarantee a rainbow cycle?

Q: How many cycles on [*n*] guarantee a rainbow cycle?

Q: How many cycles on [*n*] guarantee a rainbow cycle?

- three cycles on [5]
- no rainbow cycle

 $n many cycles on [n] \implies rainbow cycle.$

 $n many cycles on [n] \implies rainbow cycle.$

Tightness: Hamilton cycle $\times (n-1)$

 $n many cycles on [n] \implies rainbow cycle.$

Tightness: Hamilton cycle $\times (n-1)$

 $n many cycles on [n] \implies rainbow cycle.$

Tightness: Hamilton cycle $\times (n-1)$

 $n many cycles on [n] \implies rainbow cycle$

 $n many cycles on [n] \implies rainbow cycle$

Proof:

 $n many cycles on [n] \implies rainbow cycle$

Proof:

• maximal rainbow forest F (# edges $\leq n-1$)

 $n many cycles on [n] \implies rainbow cycle$

Proof:

- maximal rainbow forest F (# edges $\leq n-1$)
- another edge e in different color

 $n many cycles on [n] \implies rainbow cycle$

Proof:

- maximal rainbow forest F (# edges $\leq n-1$)
- another edge e in different color
- *F* + *e* contains a rainbow cycle

$2\left\lceil \frac{n}{2}\right\rceil - 1$ many odd cycles on $[n] \implies$ rainbow odd cycle

 $2\lceil \frac{n}{2} \rceil - 1$ many odd cycles on $[n] \implies$ rainbow odd cycle

Tightness: max-length odd cycle $\times (2\lceil \frac{n}{2} \rceil - 2)$

 $2\left\lceil \frac{n}{2}\right\rceil - 1$ many odd cycles on $[n] \implies$ rainbow odd cycle

Tightness: max-length odd cycle $\times (2\lceil \frac{n}{2} \rceil - 2)$

 $2\lceil \frac{n}{2} \rceil - 1$ many odd cycles on $[n] \implies$ rainbow odd cycle

Tightness: max-length odd cycle $\times (2\lceil \frac{n}{2} \rceil - 2)$

$\lfloor \frac{6}{5}(n-1) \rfloor + 1$ many even cycles on $[n] \implies$ rainbow even cycle.

 $\lfloor \frac{6}{5}(n-1) \rfloor + 1$ many even cycles on $[n] \implies$ rainbow even cycle.

Tightness:

n = 4

6

 $\lfloor \frac{6}{5}(n-1) \rfloor + 1$ many even cycles on $[n] \implies$ rainbow even cycle.

Tightness:

 $\lfloor \frac{6}{5}(n-1) \rfloor + 1$ many even cycles on $[n] \implies$ rainbow even cycle.

Tightness:

$\lfloor \frac{6}{5}(n-1) \rfloor + 1$ many even cycles on $[n] \implies$ rainbow even cycle

 $\lfloor \frac{6}{5}(n-1) \rfloor + 1$ many even cycles on $[n] \implies$ rainbow even cycle

Proof strategy:

 $\lfloor \frac{6}{5}(n-1) \rfloor + 1$ many even cycles on $[n] \implies$ rainbow even cycle

Proof strategy:

- maximal Frankenstein subgraph F (# colors $\leq \frac{6}{5}(n-1)$)
- another properly chosen edge e
- F + e contains a rainbow even cycle

 $\lfloor \frac{6}{5}(n-1) \rfloor + 1$ many even cycles on $[n] \implies$ rainbow even cycle

Proof strategy:

- maximal $\mathfrak{Frankenstein}$ subgraph F (# colors $\leq \frac{6}{5}(n-1)$)
- another properly chosen edge e
- F + e contains a rainbow even cycle

 $\lfloor \frac{6}{5}(n-1) \rfloor + 1$ many even cycles on $[n] \implies$ rainbow even cycle

Proof strategy:

- maximal Frankenstein subgraph F (# colors $\leq \frac{6}{5}(n-1)$)
- another properly chosen edge e
- F + e contains a rainbow even cycle

What Frankenstein?

1v-glue of A-, B- and C-graphs

• 1v-glue of A-, B- and C-graphs

- 1v-glue of A-, B- and C-graphs
- A-graph: maximal rainbow tree

- 1v-glue of A-, B- and C-graphs
- A-graph: maximal rainbow tree
- *B*-graph: rainbow odd cycle, length \geq 7

- 1v-glue of A-, B- and C-graphs
- A-graph: maximal rainbow tree
- *B*-graph: rainbow odd cycle, length \geq 7
- C-graph: another subtle class

• What about (pk + q)-cycles on [n]?

- What about (pk + q)-cycles on [n]?
- What about k-cycles on [n]?
 - In particular, what about *n*-cycles on [*n*]?

- What about (pk + q)-cycles on [n]?
- What about k-cycles on [n]?
 - In particular, what about *n*-cycles on [*n*]?

Theorem (Győri, 2006; Goorevitch–Holzman, 2022+)

 $\lfloor \frac{n^2}{8} \rfloor + 1$ many triangles on $[n] \implies$ rainbow triangle

- What about (pk + q)-cycles on [n]?
- What about k-cycles on [n]?
 - In particular, what about *n*-cycles on [*n*]?

Theorem (Győri, 2006; Goorevitch–Holzman, 2022+)

 $\lfloor \frac{n^2}{8} \rfloor + 1$ many triangles on $[n] \implies$ rainbow triangle

